
AIAA JOURNAL

Vol. 39, No. 5, May 2001

Survey of Shape Parameterization Techniques for High-Fidelity
Multidisciplinary Shape Optimization

Jamshid A. Samareh¤

NASA Langley Research Center, Hampton, Virginia 23681

A survey is provided of shape parameterization techniques for multidisciplinary optimization,and some emerg-
ing ideas are highlighted. The survey focuses on the suitability of available techniques for multidisciplinary ap-
plications of complex con� gurations using high-� delity analysis tools such as computational � uid dynamics and
computational structural mechanics. The suitability criteria are based on the ef� ciency, effectiveness, ease of im-
plementation, and availability of analytical sensitivities for geometry and grids. A section on sensitivity analysis,
grid regeneration, and grid deformation techniques is also provided.

Nomenclature
B = Bernstein polynomial
Nc = polynomial coef� cients
ND = grid perturbations
J = cell Jacobian
k = spring stiffness
N = B-spline basis function
NP = coordinates of nonuniform rational B-spline

(NURBS) control point
NR = coordinates of deformed model
Nr = coordinates of baseline model
t = response
NU = design vector
u = independentparameter coordinate
V = baseline cell volume
Nv = design variable vector
W = NURBS weights
" = small positive number

Subscripts

f = � eld (volume) grid
g = geometry
i; j = control point indices
k = grid-point index
m = element index
n = basis vector index
p = degree of Bernstein polynomial

and B-spline basis function
s = surface grid

Superscripts

i = polynomial power
n = number of design variables

Introduction

IMAGINE that you have been asked to performmultidisciplinary
shape optimization (MSO) for a complete aerospace con� gu-

ration during the design phase. In MSO, the use of high-� delity
tools such as computational � uid dynamics (CFD) and computa-
tional structural mechanics (CSM) will bring more con� dence to
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the design. These tools require detailed grid models. The availabil-
ity (or lack) of automatedcommercialgrid generationtools plays an
important role in the selectionof a shapeparameterizationapproach.

Generally, multidisciplinarydesign optimization (MDO) should
exploit the synergismof the primary, mutually interactingphenom-
ena to improve the design. The MDO applications commonly in-
volve sizing, topology, and shape optimization. Sizing optimiza-
tion is used to � nd the optimum cross-sectional area for bars and
trusses and thickness for plate and shell elements. Sizing opti-
mization is a matured technology and is available in most com-
mercial CSM tools. Topology optimization is a technique for de-
termining the optimal material distribution, which can suggest
the optimum layout of the structure. Shape optimization � nds
the optimum shape for a given structural layout. Obviously, the
choiceof shapeparameterizationtechniquehas enormous impact on
the formulation and implementation of the optimization problem.
This paper reviews and evaluates the available shape parameteri-
zation techniques for multidisciplinary optimization of aerospace
applications.

Over the past several decades, single discipline shape optimiza-
tion has been successfully applied to two-dimensional and simple
three-dimensionalcon� gurations.1;2 In recent years, interest in the
application of MSO to complex three-dimensional con� gurations
has grown.3 The MSO for a complete aerospace con� guration is
a challenging task, especially if the MSO application is based on
high-� delity analysis tools. This survey focuses primarily on shape
parameterization for high-� delity analysis tools such as CFD and
CSM because geometry and grid generation requirements for these
tools are the most stringent among the disciplinesused in the MDO
of an aerospace vehicle.

CFD tools use the detailed de� nition of the skin shape (also re-
ferred to as the outer mold line), whereas CSM tools use all compo-
nents. Generally, the CSM models require only a relatively coarse
grid, but the grid must handlevery complex internaland externalge-
ometry components. In contrast, the CFD � eld grid is very � ne, but
only needs to model the external geometry components. The MSO
of an aerospace vehicle must treat not only the external geometry,
for example, wing skin, fuselage, � aps, nacelles, and pylons, but
also the internal structural elements, for example, spars, stiffeners,
ribs, and fuel tanks, as shown in Fig. 1.

Sensitivity analysis is an important consideration for shape pa-
rameterization, and the next section provides details. Then, several
shape parameterization approaches are reviewed. The last section
of the paper provides an overview of grid deformation and grid
regenerationmethods.

Sensitivity Analysis
Sensitivity is de� ned as the partial derivative of a response with

respect to a design variable. The sensitivity analysis is an essential
building block of gradient-basedoptimization. In some of the CSM
literature, the sensitivity derivatives are referred to as the design
velocity � eld. Despite recent advances in sensitivity analysis, very
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Fig. 1 Internal components of a wing.

few geometry modeling and grid generation tools currently provide
analytical sensitivity.

The sensitivity derivatives of a response t with respect to the
design variable vector Nv can be written as

@t

@ Nv
D

@ t

@ NR f

@ NR f

@ NRs

@ NRs
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@ Nv
(1)

where NR f is the � eld (volume) grid, NRs is the surface grid, and NRg

is the geometry description.
The � rst term on the right-hand side of Eq. (1) represents the

sensitivity derivativesof the response with respect to the � eld grid-
point coordinates.For a detailed discussion,see Refs. 1–4 for CSM
discipline and Refs. 3 and 5 for CFD discipline. The second term
on the right-hand side of Eq. (1) is vector of the � eld grid-point
sensitivity derivatives with respect to the surface grid points. The
� eldgridgeneratormust providethe sensitivityderivativevector,but
few grid generationtoolshave thecapabilityto providetheanalytical
grid-point sensitivity derivatives.6 The third term on the right-hand
side of Eq. (1) denotes the surface grid sensitivity derivatives with
respectto the geometry,which the surfacegrid generationtoolsmust
provide these derivatives.The fourth term on the right-hand side of
Eq. (1) signi� es the geometry sensitivityderivativeswith respect to
the design variable vectors; the geometry construction tools, such
as CAD, must provide this term.

Zang and Green have reviewed current methods and tools for
sensitivity analysis.7 There are four techniques for computing the
sensitivityderivatives:manual differentiation,automatic differenti-
ation, complex variables,and � nite differenceapproximation.If the
source codes are available, they can be differentiatedeither by hand
or with automatic differentiation tools.

Automatic differentiation tools such as ADIFOR8 or ADIC9 can
simplifyand automate the differentiationprocess.ArgonneNational
Laboratory maintains a web site on computational differentiation
tools† such as ADIC‡ and ADIFOR.§ These are preprocessingtools.
For example, ADIFOR accepts as input a FORTRAN code, along
with speci� cations of the input and output variables. ADIFOR then
produces an augmented FORTRAN code that contains the original
analysis capability plus the capability for computing the analytical
derivatives of all of the speci� ed output quantities with respect to
all of the speci� ed input quantities.Another attractive alternative is
the use of the complex variable technique.10;11 Of course, a hand-
coded differentiation will probably be more ef� cient in terms of
both computation time and computer memory.7

It is possibleto use � nitedifferencesto approximatethe sensitivity
derivatives, but feasibility and accuracy issues must be considered.
Using � nite difference approximations for sensitivity calculation is
feasibleas longas theperturbedgeometry(grids)has the same topol-
ogy as the unperturbedgeometry(grids). CommercialCAD systems
and unstructured grid generation techniques do not guarantee the
same topologyfor the perturbedandunperturbedgeometries(grids).

Figure 2 shows a high-speed civil transport with seven planform
design variables. Figure 3 shows the error involved in using a � nite
difference approximation for shape sensitivity derivative calcula-
tions [fourth right-hand term in Eq. (1)]. This error behavior is typ-
ical of � nite difference approximations for sensitivity calculations.

†See URL http://www-unix.mcs.anl.gov/autodiff.
‡See URL http://www-fp.mcs.anl.gov/adic.
§See URL http://www-unix.mcs.anl.gov/autodiff/ADIFOR.

Fig. 2 Design variables for a high-speed civil transport.

Fig. 3 Error in � nite difference approximation for shape sensitivity
derivative calculations.

For larger step sizes, the truncation error is predominant, and for
smaller step sizes, the roundoff error is predominant.At the optimal
step size, the error is minimum. This optimal step size is different
for each design variable and would also vary for each optimization
cycle. Using higher-order approximation and techniques outlined
in Refs. 12 and 13 can reduce the truncation error, provided that
geometry (grid) topology stays � xed during the evaluation of the
� nite difference approximation.

Multidisciplinary Shape Parameterization
Eight shape parameterization approaches are reviewed in this

section; the discussion focuses on the suitability of available tech-
niques for multidisciplinary high-� delity applications of complex
con� gurations. A successful parameterization process must 1) be
automated, 2) provide consistent geometry changes across all dis-
ciplines, 3) provide sensitivity derivatives (preferably analytical),
4) � t into the product development cycle times, 5) have a direct
connection to the CAD systems used for design, and 6) produce a
compact and effective set of design variables for the solution time
to be feasible. For more details, see Ref. 14.

The high-� delity analyses involved in an MDO application nor-
mally use grids, and these disciplinarygrids are often dissimilar.An
MDO application demands consistent shape changes across all dis-
ciplines. Either parameterizingall disciplinarygrids consistentlyor
using a single source for geometry creation can achieve consistent
shape parameterization.Manual creation of CFD and CSM grids is
time consuming and costly for a full airplanemodel: It takes several
months to develop detailed CSM and CFD grids based on a CAD
model. The disciplinary grids can be parameterized, and then they
can be deformed. The grid deformationalleviates the need for auto-
matic grid generation tools, but its use is limited to small geometry
perturbations.14 On the other hand, the single source for geometry
is very attractive, but requires the grid be regenerated during the
optimizationprocess. This requirement compels the MDO environ-
ment to rely on automatic grid generation tools, which may not be
available for all disciplines.

During the design optimization, the geometry goes throughmany
small geometry perturbations. For example, the optimization of a

http://www-unix.mcs.anl.gov/autodiff
http://www-fp.mcs.anl.gov/adic
http://www-unix.mcs.anl.gov/autodiff/ADIFOR
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wing startswith a baselinewingdesign,and thegoal is to improvethe
wing performance by using numerical optimization. The geometry
changes (perturbations) between the initial and optimized wings
are very small,15;16 but the difference in wing performance can be
substantial.When the shapeperturbationsare parameterizedinstead
of the shape itself, the number of shape design variables can be
reduced, and the need to reverse-engineer existing nonparametric
models can be avoided entirely.

An important ingredient of shape optimization of an aerospace
vehicle is the availability of a model parameterized with respect to
theairplaneshapeparameterssuchas planform,twist, shear,camber,
and thickness.

The parameterization techniques can be divided into eight cate-
gories: basis vector, domain element, partial differential equation,
discrete, polynomial and spline, CAD-based, analytical, and free-
form deformation (FFD). Haftka and Grandhi1 and Ding2 provide
surveys of shape optimization up to 1986. The present focus is on
some recent developments in the area of shape parameterization
for complex aerospace models and their suitability for MSO ap-
plications. The suitability criteria are based on the ef� ciency, ef-
fectiveness, ease of implementation, and availability of analytical
sensitivities for geometry and grid models.

Basis Vector Approach
Pickett et al.17 proposed a technique that combines the second

through fourth right-handterms of Eq. (1) into a set of basis vectors.
The shape changes can be expressed as

NR D Nr C
X

n

Nvn NUn (2)

where NR is the design shape, Nr is the baseline shape, and NU are
design vectors based on several proposed shapes. The proposed
shapes must share the same grid topology.When the shape changes
are parameterized, this technique can provide a compact set of de-
signvariables.With the assumptionthat the reducedbasis is constant
throughoutthe optimizationcycle, this techniqueis a goodapproach
and is availablein most commercialCSM codes.18¡21 This approach
also provides a mechanism to transfer the sensitivity data to most
commercial analysis codes. Because the grids can be regenerated
automatically [see Eq. (2)], the approach avoids the need for grid
generation. For simple geometry, the design vectors may be manu-
ally generated for each discipline.Because multidisciplinaryappli-
cations often use dissimilar grids, manual generation of consistent
design vectors across all disciplines is dif� cult.

Domain Element Approach
The domain element approach is based on linking a set of grid

points to a macroelement (domain element) that controls the shape
of the model. Figure 4a shows a domain element with four nodes
(A–D) for the baseline model. As the nodes of the domain element
move (A–D), the grid points belonging to the domain will move
as well (Fig. 4b). The movement is based on an inverse mapping
between the grid points and the domain element, and the parametric
coordinatesof the grid pointswith respect to the domain element are
kept � xed through the optimization cycles.19 The domain element
technique is available for shape optimization in some commercial
software.21 This method is very ef� cient, and it is relatively simple
to implement. Because the method is based on parameterizing a
set of points regardless of their connectivity, it would 1) avoid grid

a) Baseline model b) Deformed model

Fig. 4 Domain element.

regenerationand 2) result in a consistentshape parameterizationfor
multidisciplinaryapplications.

Partial Differential Equation Approach
Bloor and Wilson22 presented an ef� cient and compact method

for parameterizing the surface geometry of an aircraft. The method
considers the surface generation as a boundary-valueproblem, and
it produces surfaces as the solutions to elliptic partial differential
equations (PDE). Bloor and Wilson showed that it was possible to
represent aircraft geometry in terms of a small set of design vari-
ables. Brown et al.23 presented methods for generating B-spline
approximations to PDE surfaces to enable data transfer to CAD
systems. Smith et al.24 extended the PDE approach to a class of air-
plane con� gurations. Included in this de� nition were surface grids,
volume grids, and grid sensitivity derivatives for CFD. Grid sensi-
tivity was obtained by applying the automatic differentiation tool
ADIFOR.8

Discrete Approach
The discrete approach is based on using the grid-point coordi-

nates (Fig. 5) as design variables; for example, Refs. 25 and 26.
This approach is easy to implement, and the geometry changes are
limited only by the number of design variables.Because the geome-
try is perturbedby movingindividualgridpoints,a smoothgeometry
is dif� cult to maintain, and the optimization solution may be im-
practical to manufacture, as pointed out by Braibant and Fleury.27

Additional optimization constraints must be taken into account au-
tomatically to avoid an unrealistic design. For example, one can use
multipoint constraints and dynamic adjustment of lower and upper
bounds on the design variables. For a model with a large number
of grid points, the number of design variables often becomes very
large and may lead to high cost and a dif� cult optimizationproblem
to solve.

An MDO applicationoften requires parameterizationof multiple
dissimilar grids, for example, CFD and CSM. Because the discrete
approach parameterizes individual grids, it cannot guarantee a con-
sistent shape parameterizationacross multiple disciplines.

A variationof the discrete approach, the natural design approach,
usesa set of � ctitiousloadsas designvariables;for example,Ref. 28.
These � ctitious loads are applied to the boundary points, and the re-
sulting displacements, or natural shape functions, are added to the
baseline grid to obtain a new shape. Consequently, the relationship
between changes in design variables and grid-point locations is es-
tablished through a � nite element analysis.Zhang and Belegundu29

provideda systematicapproachfor generatingthe sensitivityderiva-
tives and several criteria to determine their effectiveness.

The most attractive feature of the discrete approach is the ability
to use an existing grid for optimization, and the grid regeneration
process can be avoided during the shape optimization process. The
model complexity has little or no bearing on the parameterization
process. A strong local control on shape changes can be achieved
by restricting the changes to a small area. When the shape design
variables are the grid-point coordinates, the grid sensitivity deriva-
tive analysis is trivial to calculate; the third and fourth right-hand
terms in Eq. (1) can be combined to form an identity matrix.

Polynomial and Spline Approaches
Use of polynomial and spline representations for shape parame-

terizationobviouslycan reduce the total numberof designvariables;
for example, see Fig. 6. Braibant and Fleury27 showed that Bezier

Fig. 5 Airfoil designed by a set of points.

Fig. 6 Airfoil designed by a set of control points.
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and B-spline curves are well suited for shape optimization.A poly-
nomial can describe a curve in a very compact form with a small set
of design variables.

The analytical sensitivity derivatives with respect to the design
variable vector can be computed ef� ciently and accurately.For ex-
ample, a curve can be described as the polynomial

NR.u/ D
n ¡ 1X

i D 0

Nci u
i (3)

where n is the number of design variablesand u is the parameter co-
ordinate along the curve. The term Nci is a set of coef� cient vectors
corresponding to three-dimensional coordinates, and the compo-
nentsof thesevectorscanbeused as designvariables.The sensitivity
derivativesof geometry, NR, with respect to Nci are ui . The polynomial
representationin Eq. (3) is in the power basis form, and the Nci coef-
� cient vectors convey very little geometric insight about the shape.
Also, the power basis form is prone to round-off error if there is a
large variation in the magnitude of the coef� cients.30 Nevertheless,
the polynomial form is a powerful and compact representation for
shape optimizationof simple curves, for example, Refs. 31 and 32.

The Bezier representation is another mathematical form for rep-
resenting curves and surfaces. For example, a Bezier curve can be
described by

NR.u/ D
nX

i D 1

NPi Bi;p.u/ (4)

where n is the number of control points (design variables) and the
Bi; p.u/ are degree p Bernstein polynomials.The coef� cients NPi are
the control points (forming a control polygon), and they typically
are used as design variables. See Farin30 for further discussions
on the properties of Bezier form. The Bezier form is a far better
representation than the power basis, even though mathematically
equivalent, because the computation of Bernstein polynomials is a
recursive algorithm(de Casteljau algorithm) (see Ref. 30) that min-
imizes the roundoff error. Also, the control points are more closely
related to the curve position. In fact, the control points approximate
the curve. The convex hull of the Bezier control polygon contains
the curve. This property is very useful, especially in de� ning the
geometric constraints. The � rst and last control points are located
exactly at the beginning and the end of the curve, respectively.The
sensitivityderivativesof geometry, NR, with respect to NPi are Bi;p.u/,
the Bernstein polynomial functions. These functions are indepen-
dent of the Bezier control points, that is, design variables; there-
fore, the sensitivity derivatives stay � xed during the optimization
process.

The Bezier form is an effective and accurate representation for
shapeoptimizationof simple curves, for example,Ref. 33. Complex
curves require a high-degree Bezier form. However, as the degree
of a Bezier curve increases, so does the roundoff error. Also, it is
very inef� cient to compute a high-degree Bezier curve. Instead, to
use Bezier representation for a complex curve, one can use several
low-degree Bezier segments to cover the entire curve. The resulting
composite curve is referred to as a spline or, more accurately, a
B-spline. A multisegmented B-spline curve can be described by

NR.u/ D
nX

i D 1

NPi Ni;p.u/ (5)

where NPi are the B-splinecontrolpoints, p is the degree,and Ni;p.u/
is the i th B-splinebasis functionof degree p. In additionto the desir-
able propertiesof the Bezier representation,the low-degreeB-spline
form can represent complex curves ef� ciently and accurately. The
sensitivityderivativesof geometry, NR, with respect to NPi are Ni;p.u/,
the B-spline basis function. Similar to a Bezier form, the sensitivity
derivatives of a B-spline curve stay � xed during the optimization
cycles.

Some limited applications in the literature are based on polyno-
mial and spline representations. Cosentino and Holst15 optimized
a transonic wing con� guration by using a cubic-spline representa-
tion for two-dimensional airfoils that de� ne wing geometry. Then,

they used the position of the spline control points, in particular,
those points that affect the wing region wetted by supersonic � ow,
as design variables to be optimized. In a design case study on the
Lockheed C-141B aircraft, Cosentino and Holst reduced the num-
ber of design variables from 120 to 12 by using the cubic-spline
technique. In recent years, Schramm and Pilkey34 used a B-spline
representationto performstructuralshape optimizationfor a torsion
problem with direct integration and B-splines. Similarly, Anderson
and Venkatakrishnan35 used B-splines with an unstructured grid
CFD code for aerodynamic design optimization.

The only drawback of the regular B-spline representation is its
inability to represent implicit conic sections accurately.However, a
special form of B-spline, nonuniform rational B-spline (NURBS),
can representmost parametricand implicitcurvesand surfaceswith-
out loss of accuracy.30 NURBS can represent quadric primitives,
for example, cylinders and cones, as well as free-form geometry.30

Some implicit surfaces, for example, helix and helicoidal36 cannot
be converteddirectly to NURBS, but these surfaces are not common
in most aerospace applications.A NURBS curve is de� ned as

NR.u/ D
Pn

i D 1 Ni;p.u/Wi
NPiPn

i D 1 Ni;p.u/Wi

(6)

where the NPi are the control points, Wi are the weights, and Ni; p.u/
is the i th B-spline basis function of degree p. Similar to the Bezier
form, for a NURBS representation the sensitivity derivatives with
respect to the control points are � xed during the optimization cy-
cles. However, if the weights are selected as design variables, the
sensitivity derivatives will be functions of the weight design vari-
ables. Schramm et al.37 have successfullyused the two-dimensional
NURBS representationsfor shape optimization.

The polynomial and spline techniques are well suited for two-
dimensional and simple three-dimensionalmodels. Complex three-
dimensional models are made of many curves and surfaces; as a
result, these curves and surfaces are dif� cult to model outside of
a CAD system. Also, complex models require a large number of
control points, and optimization is prone to creating irregular27 or
wavy38 geometry.

CAD-Based Approach
Use of commercial CAD systems for geometry modeling can

potentially save development time and be the single source for ge-
ometry constructionand manipulation for an MDO application.For
a more detailed account of the role of CAD in MDO, see Ref. 14.
Most solid modeling CAD systems use either a boundary repre-
sentation or a constructive solid geometry method to represent a
physical, solid object.39

To parameterize an existing model is still a challenging task in
today’s CAD systems,40 and the models created are not always good
enough for automatic grid generation tools. Designers may believe
their models are complete and accurate, but unseen imperfections
(e.g., gaps, unwanted wiggles, free edges, slivers, and transition
cracks) often cause problems in gridding for CSM and CFD. For
more details, see Refs. 14 and 41.

Feature-based solid modeling (FBSM) CAD systems42 are ca-
pable of creating dimension-driven objects. These systems use
Boolean operations such as intersection and union of simple fea-
tures. Examples of simple features include holes, slots (or cuts),
bosses (or protrusions), � llets, chamfers, sweeps, and shells. To-
day’s CAD systems allow designers to work in a three-dimensional
space while using topologicallycomplete geometry (solid models)
that can be modi� ed by altering the dimensions of the features from
which it was created.The most important capabilityof FBSM is the
ability to capture the design intent. The FBSM tools have made de-
sign modi� cation much easier and faster. The developers of FBSM
CAD systems have put the design back in CAD. Because FBSM
CAD tools enable today’s design engineers to create a new, com-
plete, and parametric model for a con� guration, these tools are be-
ing incorporated into the design environment. Blair and Reich43

presented a vision to integrate an FBSM CAD system with full
associativity into a virtual design environment.
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Even though use of parametric modeling in design would make
the FBSM tools ideal for optimization,existing FBSM tools are not
capableof calculatingsensitivityderivativesanalytically.Townsend
et al.40 discussedissuesinvolvedin usinga CAD systemfor anMDO
application. This work identi� ed the calculation of the analytical
sensitivityderivative as one of the important integration issues. The
computer codes for commercial CAD systems are very large; to dif-
ferentiatethe entire system with automaticdifferentiationtoolsmay
not be feasible. Therefore, calculation of the analytical sensitivity
derivatives of geometry with respect to the design variables could
prove to be dif� cult within a commercial CAD environment. For
some limited cases, the analytical shape sensitivity derivatives can
be calculated based on a CAD model44; however, this method will
not work under all circumstances. One dif� culty is that, for some
perturbationof some dimensions,the topologyof the CAD part may
be changed.

Another way to calculate the sensitivity derivatives is to use � -
nite differences, as long as the perturbed geometry has the same
topology as the unperturbed geometry. Both methods, the analyti-
cal and � nite difference approximations,have their dif� culties and
limitations. He et al.45 presented a procedure for integrating CAD
and computer-aidedengineering systems to support geometry- and
detailed- analysis-based optimization. The sensitivity derivatives
were calculated by a � nite difference approximation.

Analytical Approach
Hicks and Henne16 introduceda compact formulation for param-

eterizationof airfoil sections.The formulationwas based on adding
shape functions (analytical functions) linearly to the baseline shape.
The contribution of each parameter is determined by the value of
the participatingcoef� cients (design variables) associatedwith that
function. All participating coef� cients are initially set to zero, and
so the � rst computation gives the baseline geometry. The shape
functions are smooth functions based on a set of previous airfoil
designs. Elliott and Peraire32 and Hager et al.46 used a formulation
similar to that of Hicks and Henne,16 but with a different set of
shape functions.This method is very effective for wing parameteri-
zation.

FFD Approach
Grid generation for CFD and CSM is time consuming and costly

for a full airplane model: To develop detailed CSM and CFD grids
based on a CAD model requires several months. To � t into the
product development cycle times, the MSO must rely on the pa-
rameterization of the analysis grids, for which the FFD algorithm
is ideal. The FFD algorithm is a subset of the soft object anima-
tion (SOA) algorithms used in computer graphics47 for morphing
images48 and deformingmodels.49;50 These algorithmsare powerful
tools for modifying shapes: They use a high-level shape deforma-
tion, as opposed to manipulation of lower level geometric entities.
The deformation algorithms are suitable for deforming models rep-
resentedby either a set of polygonsor a set of parametric curves and
surfaces. The SOA algorithms treat the model as rubber that can be
twisted, bent, tapered, compressed,or expanded,while retaining its
topology.This algorithmis ideal forparameterizingairplanemodels
that have external skin as well as internal components; for example,
see Fig. 1. The SOA algorithms relate the grid-point coordinatesof
an analysis model to a number of design variables. Consequently,
the SOA algorithms can serve as the basis for an ef� cient shape
parameterization technique.

Barr49 presented a deformation approach in the context of phys-
ically based modeling. This approach uses physical simulation to
obtain realistic shape and motions and is based on operations such
as translation, rotation, and scaling. With this algorithm, the defor-
mation is achieved by moving the grid points of a polygonmodel or
the control points of a parametric curve and surface. Sederberg and
Parry50 presented another approach for deformation, based on the
FFD algorithm,that operateson thewhole spaceregardlessof the re-
presentation of the deformed objects embedded in the space. The
algorithmallows a user to manipulate the controlpoints of trivariate
Bezier volumes. Coquillart51 extended a Bezier parallelepiped to a
nonparallelepipedcubic Bezier volume.

Lamousin and Waggenspack52 modi� ed FFD to include NURBS
de� nition and multiple blocks to model complex shapes. Yeh and
Vance53 and Perry and Balling54 used the modi� ed technique for
design and optimization. Yeh and Vance53 developed an applica-
tion based on NURBS whereby the user can change the shape of a
virtual object and examine the effect the shape change has on the
displacement of the structural deformation and stress distribution
throughout the object. Perry et al.55 successfully used the FFD al-
gorithm for the optimizationof an automobile air conditioningduct
system.

Hsu et al.56 presented a method to manipulate directly the object;
this method creates a more intuitive and transparent environment
for FFD. Borrel and Rappoport57 presented a simple, constrained
deformation that allows the user to de� ne a set of constraint points,
giving a desireddisplacementand radius of in� uence for each. Each
constraintpoint determinesa localB-spline basis function, centered
at the constraintpoint that falls to zero for points beyond the radius.
This technique directly in� uences the � nal shape of the deformed
object.

The FFD formulation is independent of grid topology, and that
independencemakes it suitable for a variety of analysis codes, such
as low-� delity (e.g., linear aerodynamics and equivalent laminated
plate structures) and high-� delity (e.g., nonlinearCFD and detailed
� nite element modeling) analysis tools. The analytical sensitivity
derivatives are available for use in a gradient-basedoptimization.

The design variables used in FFD may have no physical sig-
ni� cance for the design engineers, thereby making it dif� cult to
establish an effective and compact set of design variables. To
resolve this dif� culty, the original SOA algorithms have been
modi� ed,58 and the modi� ed algorithms are referred to as multi-
disciplinary aerodynamic-structural shape optimization using de-
formation (MASSOUD).

The MASSOUD approach consists of three basic concepts: 1)
parameterizingthe shape perturbations rather than the geometry it-
self, 2) utilizing the SOA algorithmsused in computer graphics,and
3) relating the deformation to aerodynamic shape design variables
such as thickness,camber, twist, shear, and planform. Reference 58
contains the implementationdetailsof parameterizingfor planform,
twist, dihedral, thickness, and camber.

The modi� ed algorithm has been used for parameterizing a
simple wing, a blended wing body, and several high-speed civil
transport con� gurations. The algorithm has been successfully im-
plemented for aerodynamicshape optimizationwith analytical sen-
sitivity derivativesfor structuredgrid59 and unstructuredgrid60 CFD
codes.

Field Grid Regeneration and Deformation
During the shapeoptimizationprocess,the surfacegrids are either

regeneratedor deformed.As a result, the � eld grids for high-� delity
analysis tools, such as CFD, must be either regeneratedor deformed.
The next two subsections provide an overview for structured and
unstructuredgrid regeneration and deformation techniques.

Structured Grid
Most structuredgrid regenerationand deformationtechniquesare

basedon trans� nite interpolation(TFI). Gaitonde and Fiddes61 used
a regenerating grid technique based on using TFI with exponential
blendingfunctions.The choiceof blendingfunctionshasa consider-
able in� uence on the quality and robustnessof the � eld grid. Soni62

proposed a set of blending functions based on arc length that is ex-
tremely effective and robust for grid regeneration and deformation.
His algorithmhas been incorporatedin most commercial structured
grid generation packages.

Jones and Samareh6 presentedan algorithmfor grid regeneration
and deformationbased on Soni’s62 blendingfunctions,and they also
provided analytical sensitivity derivatives by using the automatic
differentiation tool ADIC.9 The method is suitable for a general,
multiblock, three-dimensional volume grid deformation. Hartwich
and Agrawal also used the idea of volume grid deformation.63 They
introduced two new techniques:1) the use of the slave–master con-
cept to semiautomate the process and 2) the use of a Gaussian dis-
tribution function to preserve the integrity of grids in the presence
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Table 1 Multidisciplinary shape parameterization approaches

Basis Domain Polynomial CAD
Feature vector element PDE Discrete and spline based Analytical FFD

What parameterizing Ga G Sb G S S G, S G, S
capabilities?

Consistent across Yc Y Y Y Y Y
disciplines?

Require reverse Y Y Y
engineering of
original design?

Require automatic grid Y Y Y
generation tools?

Handle large geometry Y Y Y
changes?

Analytical sensitivity Y Y Y Y Y Y Y
derivatives available?

Level of complexity for Ld L Me L M Hf L M
geometry changes?

aGrid. bSurface. cYes. dLow. eMedium. fHigh.

of multiple body surfaces. Reuther et al.64 used a modi� ed TFI
approachwith blendingfunctionsbased on arc length,and they used
� nite difference approximation to compute the sensitivity deriva-
tives for the � eld grid.

LeathamandChappell65 used theLaplaciantechnique,commonly
used for unstructuredgrid deformation,for moving structuredgrids.
They have been successful in deforming structured grids with this
technique.

Unstructured Grid
For unstructured grids with large geometric changes, Botkin66

proposed to regenerate a complete grid at the beginning of each
optimization cycle. However, for gradient calculations many small
changes must be made, and to regenerate the grid for each design
variable perturbation would be too costly. Botkin has introduced a
local regridding procedure that operates only on the speci� c edges
and faces associatedwith the designvariablesbeing perturbed.Sim-
ilarly, Kodiyalam et al.67 used a grid regeneration technique based
on the assumption that the solid model topology stays � xed for
small perturbations.The solid model topology contains the number
of grid points, edges, and faces. Any change in the topology will
cause the model regeneration to fail. To avoid such a failure, a set
of constraintsmust be satis� ed among design variables, in addition
to constraints on their bounds.

For a dynamic aeroelastic case with unstructuredgrids, Batina68

presented a grid deformation algorithm that models grid edges with
springs. The spring stiffness for a given edge j –k is taken to be
inversely proportional to the element edge length as

km D 1=kNr j ¡ Nrkk (7)

The grid movement is computed through predictor and corrector
steps. The predictor step is based on an existing solution from the
previous cycle, and the corrector step performs several Jacobi iter-
ations of the static equilibrium equations by using

NDn C 1 D
P

km
NDn

mP
km

(8)

where the summation is over all edges of the elements. This correc-
tor is similar to a Laplace operator, which has a diffusive behavior.
In contrast to its use for dynamic aeroelasticity, the previous opti-
mization cyclemay not provide a good initial guess for the corrector
step.

Zhang and Belegundu29 proposed a similar algorithm to handle
large grid movement. The equation for grid update is similar to
Batina’s68 approach:

NRnew D
P

km NRold

P
km

; where km D
8jJ j
V

(9)

where J is the cell Jacobian de� ned within cell parametric coordi-
nates and V is the cell volume.

Crumpton and Giles69 found the spring analogy to be inade-
quate and ineffective for large grid perturbations. They proposed
a technique based on using the heat transfer equation, where
km D 1=max.V ; "/,

r ¢ fkmr. ND/g D 0 (10)

The term V is the cell volume, and " is a small positive number
needed to avoid a division by zero. This technique is similar to the
spring analogy,68 except that it uses the cell volume for km . The
coef� cient km is relatively large for small cells. Therefore, these
small cells, which are usually near the surface of the body, tend
to undergo rigid-body motion. This rigid-body movement avoids
rapid variations in ND, thus eliminating the possibility of small cells
having very large changes in volume; such changes could lead to
negative cell volumes. Crumpton and Giles69 used an underrelaxed
Jacobi iteration, with the nonlinear km evaluated at the previous
iteration.

Summary
Eight shape parameterization approaches were presented. The

choice of shape parameterization approach depends on 1) consis-
tency and accuracy of the geometry representation, 2) number of
disciplines involved,3) availabilityof automatic grid generation,4)
optimization algorithms and requirement on availability of analyti-
cal sensitivity, 5) development cycle time, and 6) direct connection
to CAD. Table 1 summarizes the eight approaches surveyed in this
paper.
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